Posts filed under ‘שרידות’
מעבר כבלים בטיחותי בין קירות במתקני תקשורת
בעת התקנת מעברי כבלים בקירות בין אולמות מחשוב ותקשורת, יש למלא אחרי דרישות החוק ולוודא שאש ועשן לא יוכלו לעבור בין החללים השונים. הפוסט הזה דן בדרך הנכונה לביצוע מעברי כבלים, בד"כ כבלי תקשורת בקירות.
בדרך כלל, יבצעו הקבלנים/מתקינים איטום של מעברי הכבלים, כנדרש בחוק. העניין הוא שעם הזמן, הצרכים משתנים ויש להוסיף כבלים נוספים או לבצע שינויים אחרים בתשתית הכבילה
הבעיה היא שהקבלן המצוי, מתרשל בחובתו. לעיתים אינו אוטם מחדש את פתחי הכבילה לאחר השינוי וחושף את הלקוח הסופי לסכנת אש, או אוטם את פתחי הכבילה בחומרי מילוי ומחייב את הלקוח הסופי בסכום נכבד. כך זה נראה בד"כ…
הדרך הנכונה היא להשתמש ב EZ Path, המאפשר העברת כבלים חופשית מצד אחד לשני. בעת שריפה, עם עליית הטמפרטורה, חומר האיטום הפנימי מתנפח ואוטם את המעבר לחלוטין לאש ולעשן.
EZ Path מגיע במספר גדלים להולכת מס' כבלים שונה, ומאפשר גם אטימת מעברי כבלים אנכי (בין קומות). המוצר מאושר לתקני בטיחות בשריפה בינלאומיים כולל ישראל.
לפרטים נא לפנות לאתר שלנו
שדה הקרב של הדברים – The Battlefield of Things
מאפייני שדה הקרב משתנים לנגד עינינו. ל IT יש תפקיד מכריע בשדה הקרב המודרני וכמובן, התשתית הקריטית היא בחוות השרתים. בעוד העולם האזרחי מדבר על האינטרנט של הדברים, צבאות העולם מיישמים כבר את שדה הקרב של הדברים – The Battlefield of Things.
האינטרנט של הדברים ( IoT- The Internet of Things ) או כפי שנהוג לומר היום ( IoE – The Internet of Everything ) מעצב כל פרט בחיינו. כולנו הפכנו לנשאים של מיקרומעבדים, מצלמות וחיישנים באמצעות מכשירי ה Mobile והאפליקציות שלהם. עמודי תאורה נהפכים לתחנות WIFI ונושאים מצלמות מקוונות כחלק מ Safe City, רכבים נהיים מקוונים, אוטומציה מפעלית עוברת מהפיכה, בקרה אל-חוטית על מוצרים דוממים, שליטה מרחוק על מכשור ביתי ועוד.
אין בכוונתי ללעוס מחדש מה שמדובר עליו בכל כך הרבה מאמרים אלא להצביע על המקביל הצבאי של ה IoT והוא BoT – שדה הקרב של הדברים: BattleField of Things . שדה הקרב של הדברים מורכב ממערכות ניידות -מקוונות הכוללות כלי טיס בלתי מאוישים, ספינות בלתי מאוישות, רכבי סיור בלתי מאוישים, מצלמות גבול, גלאי מנהרות , מכשור ונשק של חייל החי"ר, ועוד.
כלי רכב בלתי מאויש תוצרת אלביט
האתגרים דומים: אבטחת מידע, ביג-דאטה, מחשוב ענן, קצבי תקשורת גדלים במהירות….
אני מניח שידעתם שאגיע לנושא חוות השרתים. ובכן, "חדרי המנועים" של האינטרנט של הדברים ושדה הקרב של הדברים הם חוות שרתים. ה"עננים" הערטילאיים הם דווקא מאוד מוחשים ויושבים בחוות שרתים מאובטחות וממגונות, כך לפחות אנו רוצים לקוות.
כדי לתמוך בקליטת הטכנולוגיות החדשות, חוות השרתים משנה את פניה. חוקי התכנון משתנים. בכדי לחלוק את הידע, פיתחנו באלכסנדר שניידר קורס לתכנון והקמה של חוות שרתים. אתם מוזמנים.
טעות קטנה בדטה סנטר..
ידיעה קטנה בעיתונות תפסה את עיני: במשך כשעה פחות או יותר, משתמשים ברחבי העולם לא הצליחו להעלות פוסטים ולסמן לייקים בפייסבוק בשל בעיה בדטה סנטר של פייסבוק. מפייסבוק נמסר ש"מוקדם יותר היום הבוקר (שעון ארה"ב), בזמן ביצוע עבודות תחזוקה, חווינו אירוע אשר מנע מחלק מהמשתמשים להעלות פוסטים לפייסבוק לפרק זמן קצר. פתרנו את הבעיה במהירות והמערכת שבה לפעול בתפקוד מלא. אנו מתנצלים על אי הנוחות אשר נגרמה".
למרות היותי חובב גאדג'טים וטכנולוגיה אינני מנוי בפייסבוק, כנראה בשל הפרעת אישיות כלשהי. נפילת פייסבוק אם כך לא הפריעה לי מאוד במישור האישי, שגרת יומי לא הופרעה ומצב רוחי לא נפגע. אך דבר מה קטן נוסף לכד את עיני: מניית פייסבוק נפלה עקב האירוע ב- 0.6%. לא נורא, נכון? ובכן, בשווי שוק של כ-100 מיליארד דולר, 0.6% זה 600 מיליון דולר. קצת הרבה בשביל טעות טכנאי בזמן תחזוקה.
ידוע ש 60% מהאירועים המביאים לנפילה של חוות שרתים הם תוצאה של בעיות בתכנון ותפעול של התשתית הפיזית, כלומר, מיזוג אוויר , חשמל ותשתית תקשורת. לא סוד הוא שבישראל מרבית חוות השרתים מיושנות ברמת התשתית וסובלות מרעב תקציבי מתמשך. זה מתבטא במיזוג אוויר לא יעיל, בניהול כבילה בעייתי, בחוסר מוכנות לרעידות אדמה, ובמערכות חשמל מאולתרות. התוצאה הישירה היא סיכון לרציפות העסקית. נשאלת השאלה אם כך, האם ניתן לכמת את הסיכון?
רבות נכתב על הערכת העלות של זמן דמימה ( downtime ) של חוות שרתים. הערכת העלות לשעה של זמן דמימה נעה בין אלפי דולרים לארגונים קטנים ועד לעשרות מיליונים לשעה עבור ארגונים פיננסיים גדולים. הערכת הנזק מחושבת בדרך כלל על בסיס ערך העסקאות שעורך הארגון בתקופת זמן יחד עם הערכה גסה של עלות אובדן מוניטין ואיבוד לקוחות. המקרה של פייסבוק מאיר צד נוסף של הבעיה. הנזק לבעלי המניות עקב הפגיעה במחיר המניה. לא אתפלא אם העלות של מניעה אפקטיבית של הבעיה שהתעוררה בפייסבוק היא אלפית מהנזק שספגו בעלי המניות. 600 מיליון דולר כבר אמרנו?
לא אחת אני שותף לתסכולו של סמנכ"ל הטכנולוגיות בארגון, אשר מזהה את הסיכון אך לא מצליח להשיג תקציב למזעור הסיכונים. מקרה פייסבוק מאפשר למנמ"ר לפנות למנכ"ל ולחברי הדירקטוריון ולשאול אותם: " מה יקרה למחיר המניה, אם חוות השרתים, חוט השדרה של העסק שלנו, תידום לשעה? יום? שלושה ימים?"
סקר ביצועים וסיכונים בחוות שרתים הכרחי כדי לחשוף בעיות שיכולות לסכן את הרציפות העסקית. בחברת אלכסנדר שניידר אנו מבצעים סקר של חדרי שרתים ומזהים
1. סיכונים לרציפות העסקית
2. פוטנציאל לשיפור ביעילות האנרגטית ובהוצאות התפעול
3. דרכים למקסם את התשתית הקיימת כדי לתמוך בעוד מערכות ( Hidden Capacity )
מיגון חדרי שרתים מרעידות אדמה
בהמשך לפוסט הקודם בנושא מגון חדרי מחשב מפני רעידות אדמה, הנה שתי תמונות מאתר ביפן בעקבות רעידת האדמה ב 2011.

חוות שרתים שלא מוגנה על ידי בסיס סייסמי. לאלכסנדר שניידר פתרונות קלים ומהירים ליישום מפני רעידות אדמה
חדר השרתים במתקן זה לא היה ערוך ונהרס לחלוטין. זמן השיקום (וההשבתה) ארך כ 3 חודשים. רבים מהשרתים, אגב, המשיכו לעבוד. שימו לב, שהבניין לא ניזוק. אך חדר השרתים נהרס.
חוות שרתים רבות ביפן ממוגנות על ידי בסיס סייסמי המונח מתחת לארון ה IT , או שורת ארונות השרתים והן עבדו ללא הפרעה במהלך רעידת האדמה ( 8.9 בסולם ריכטר) . ראו פוסט קודם.
שיטת מיגון אחרת היא עיגון הארונות לרצפת הבטון. שיטה זו טובה רק להגן על העובדים מפני נפילת הארונות אך, למרבה הצער, מעבירה את כל האנרגיה הדינמית מרעידת האדמה אל השרתים. בשיטה זו, האנשים בטוחים אך הציוד ייהרס.
השאלה האמיתי היא על מה רוצים להגן:
על העובדים – תעגנו לבטון
לרציפות עסקית ( וגם הגנה על העובדים) – בסיס סייסמי
גל של חדשנות בחדרי המחשב
גל של חדשנות שוטף את טכנולוגיות הדטה סנטר בעולם ובישראל. תחום חדרי המחשב היה תמיד פעיל מאוד אך מנומנם ברמה הטכנולוגית. בשנים האחרונות חוקי התכנון השתנו לחלוטין וכך גם הנוהגים המיטביים ( Best Practices ).
לפני מס' חודשים נועדתי עם חברה ישראלית המתכננת חדר מחשב חדש שיעלה לאוויר, לפי תוכניותיהם, ב 2015. אמנם אני מצדיע לחברות ישראליות החושבות לטווח ארוך, אך הדבר גרם לי להרהר נוגות בלוחות הזמנים הנהוגים לעיתים בתעשייה שלנו. פרויקט הקמה של אולם מחשוב הוא פרויקט מורכב, יצירת אומנות יחידנית אשר הכול בה מפותח מאפס ונתפר כולו לפי צרכי הלקוח. נכון? לא בהכרח.
אחת המגמות המתחזקות בתחום חדרי המחשב היא מודולים המבוססים על מערכות בתצורות אשר נוסו ונבדקו במפעל ( pre-configured ), וקל להתקינם בחדר המחשב ולדעת מראש את רמת הביצועים שנקבל ( Pre-engineered ). הרחבה והגדלה ניתנים לביצוע בקלות יחסית ( scalable ) .
הגישה החדשה מאפשרת הקמה מהירה יותר, השקעה התחלתית נמוכה יותר, מתקנים יעילים יותר ולכן גם הוצאות תפעול נמוכות יותר לאורך חיי חדר המחשב.
מאחר וחברה מקימה לעצמה חדר מחשב אחת לכל 5 עד 20 שנים, הרי כשארגון מבקש להקים לעצמו חדר מחשב חדש, זו התנסות חדשה לרוב מובילי הפרויקט. אל צוות המפעל חוברים יועצים וקבלנים חיצוניים שלהם יותר ניסיון (אנו מקווים) ונוצר צוות פרויקט אשר אין לו ניסיון משותף. הצוות מתחיל את התכנון מאפס (דבר משתלם ביותר למתכננים) ונשען על ידע לא מושלם ולא עדכני. זו הסיבה העיקרית לכך ששלב התכנון אורך בדרך כלל חודשים רבים (במקרים אחדים גם מספר שנים), כמו גם שלב הבניה, ושהפרויקט ברובו מבוסס על ניסוי וטעייה ולא על נוהגים מיטביים. גם בהתחשב בעבודה הקשה של צוות הפרויקט, עלות התמשכות הפרויקט והטעויות בהחלטות התכנוניות עולים לארגון כסף רב. התוצאה הסופית היא חדר מחשב ייחודי באמת אשר אין זהה לו והדבר נזכר כאן לא כמחמאה (אולי להיפך) אלא כציון עובדה.
התופעות הללו מתרחשות לא רק בחדרי מחשב הנבנים במבנה חדש על קרקע בתולית (Greenfield data center ) אלא גם בפרויקטים של שדרוג חדרי מחשב ( datacenter upgrade ). גבשדרוג חדרי מחשב מדובר בד"כ בהוספת יכולות של אספקת חשמל ומיזוג אוויר ושיפור מערך הכבילה. וגם כאן צוותים שהוקמו אד-הוק עובדים כדי לשדרג את חדר מחשב. במרבית המקרים גם פרויקטים אלו יכולים להיות מנוהלים ביותר יעילות אם ישתמשו ב"אבני בנין" שהן Pre-Engineered, Pre-Configured.
הנוהגים המיטביים מאפשרים היום הוספת מודולים פנימיים ( Pods ) המכילים מס' משתנה של ארונות שרתים, מערכות מיזוג ממוקד ומערכות חלוקת חשמל המורידות באופן דרמטי את זמני התכנון והיישום הנדרשים כמו גם את העלויות. ראו תמונה של POD שבו ארונות שרתים, מיזוג אוויר ותקשורת. ניתן לשלב גם אל פסק (אם כי לא נהוג).

ניתן להרחבה ושכפול באופן מודולארי
דוגמא נאה לצורך המחשה היא חדר מחשב הנבנה על פי השמועה על ידי מייקרוסופט באיידהו שבארה"ב. גודל החדר כ MW 5, ענק במושגים ישראליים אך לא במושגי מייקרוסופט, והוא יושלם תוך 28 שבועות מיום חתימת החוזה. החדר בנוי ממודולים של KW 600 כ"א כל מודול בנוי ממספר מבנים טרומיים המובלים לאתר במשאית ומחוברים תוך ימים לתשתית. ראו תמונה של חדר אנרגיה של MW 1 אשר הותקן ב 5 ימים.

חדר אנרגיה של MW 1 ב 5 ימים. נבנה במפעל. הורכב באתר.
דוגמא נוספת: בוודאי שמעתם על מיזם ה VBLOCK של EMC ו CISCO. ובכן, אם חשקה נפשכם במתקן אחסון ( storage ) מתקדם ביותר, בוודאי ששקלתם את ה VBLOCK. ובכן ניתן לרכוש את ה VBLOCK ב 6 תצורות: V0, V1, V2 וכל אחת מהן ברמת מינימום ומקסימום. חברת פנדויט ( Panduit ) מציעה לדוגמה את כל התשתית הפיזית ל VBLOCK ברמה הנדרשת במק"ט אחד. ראו תמונה:
במקט אחד: ארונות וכל התשתית הפיזית ל VBLOCK
חיסכון באנרגיה בזמן אמיתי ונהלים מיטביים. מה ניתן ללמוד מ eBay ?
זירת המסחר eBay היא אחת מזירות המסחר האינטרנטי הגדולות בעולם, ולכן היא דורשת שרידות מוחלטת ממרכז המחשוב שלה; כל זמן דמימה (downtime) יכשיל עסקאות ששוויין יותר מ-2,000 $ לשנייה. משום כך חייבים אנשי הצוות במרכז המחשוב העולמי של eBay לספק הן רציפות עסקית (uptime) והן גמישות ברמה הגבוהה ביותר, וכל זאת תוך שמירה על עלויות נמוכות.
זהו אתגר מורכב בהחלט, שכדי להצליח בו דרושה חדשנות מתמדת.
מאז שהתחילה לפעול, בנתה eBay שנים-עשר מרכזי מחשוב, ועומס החישובים רק הולך וגובר. לא פלא שגם עלויות התפעול של מרכזי המחשוב של החברה גדלות מדי שנה, במקביל לצמיחה העסקית הרצופה. בשל כך בנתה חברת eBay תוכנית ארבע-שנתית, והתחילה להפעיל אותה במרכזי המחשוב שלה. לתוכנית יש יעד שאפתני: להקטין את הוצאות החשמל בחצי תוך הכפלה של ביצועי החישוב; יחד עם זאת, המבנה של התשתית החדשה ישפר את המהימנות ואת מהירות התגובה התפעולית.
כדי להשיג יעדים אלה, תמזג חברת eBay את נכסיה ותקטין את מספרם של מרכזי המחשוב שלה. כל מרכז מחשוב חדש ייבנה מן היסוד במטרה להיות חסכוני באנרגיה ככל האפשר, בלי לפגוע ברציפות העסקית.
"אסטרטגיה מוצלחת במרכזי מחשוב מניחה שדרישות המחשוב יגדלו מדי שנה, אבל היא מאפשרת להם לגדול כנדרש בלי לייקר באופן פרופורציוני את עלויות התפעול," מסביר דין נלסון (Dean Nelson), דירקטור בכיר ב-eBay לתפעול ואסטרטגיה במרכזי המחשוב אותו פגשתי בכנס שערכה חברת Starline . "אנו חייבים לשבור את הקשר הליניארי שבין עומס החישובים לבין עלויות התפעול. לשם כך עלינו לעשות קפיצת דרך ביכולות שלנו בתחומי החיסכון באנרגיה, כוח החישוב וניצול השרתים."
במאי 2010 חנכה eBay את מתקן הדגל שלה, אבן הפינה של האסטרטגיה החדשה למרכזי המחשוב, פרויקט 'טופז'. במתקן זה, הממוקם בסאות ג'ורדן, יוטה, השקיעה חברת eBay את ההון הרב ביותר שהשקיעה אי פעם בפרויקט יחיד, והוא מחזיק כשליש מתשתית השרתים העולמית של החברה. אף על פי שהפריסה במרכז הנתונים כוללת את כל היתירות הנדרשת לצורך מהימנות בסיווג Tier IV, מתגאה מתקן 'טופז' בנצילות שימוש בחשמל (PUE) בגובה 1.4 בלבד.
נהלים מיטביים ליעילות מירבית
בתשתיות של 'טופז' שולבו מנגנונים חדשניים לחיסכון באנרגיה. חמישה מרכיבים מרכזיים בתכנון 'טופז' מעוררים עניין מיוחד בשל ערכם ובשל התאמתם לכל מרכז מחשוב מודרני:
1. הפרדה פיזית וסגירה של מעברים קרים /חמים כדי להגיע ליעילות קירור מירבית, התקינה eBay פתרון להפרדה בין מעברים. eBay בחרה בסגירה של המעבר החם, לא לפני שתכננה אותו בתשומת לב, ניסתה אבטיפוס שלו וביצעה מדידות. סגירת המעבר החם מתבצעת על ידי הפרדה קשיחה של המעברים ותיעול האוויר החם החוזר אל מערכות המיזוג דרך התקרה הכפולה.
- האוויר החם חוזר ליחידות המיזוז דרך התקרה
2. הפצה של 400V לכל ארון בחלק מהארונות ב-eBay יושבים שרתי להב מרובים, ולכן החברה רצתה שכל המסדים יהיו מסוגלים לספק עומסים בהספק של עד 17kW. אפשר, אמנם, להשיג זאת גם בשיטה המסורתית, אבל ב'טופז' בחרו למתוח את כבלי המתח הגבוה עד לארונות, והוזילו משמעותית את העלויות. משום שכל מסד מקבל חשמל במתח 400V, מצטמצמים אובדני הכוח בשנאים מורידי המתח ועל הקווים, ויחד עם זאת החברה חוסכת בתשתיות הנחושת. eBay בחרה לספק מתח תלת-פאזי של 400V לשני פסי שקעים חכמים במסד (הנקראים גם "PDU במסד"). מערכות ה-PDU במסדים, מספקות לכל שרת מתח חד-פאזי של 240V. מתח זה נמצא בתוך טווח הפעילות של כל ספק כוח של ציוד IT כלשהו. בזכות ביטולן של המרות מתח מיותרות, הפצת 400V מקטינה את עלויות האנרגיה ב-2-3% בערך בהשוואה להפצת 220V.
3. מדידה מפורטת של צריכת חשמל בשרתים נהוג לומר שהמדד הכלכלי החשוב ביותר בעיניהם של צוותי התפעול במרכזי המחשוב של eBay הוא העלות המצרפית הכוללת לכל חיפוש. ומשום שכל דור שרתים חדש מציע שיפורים אדירים בביצועי ה-CPU, חברת eBay מחליפה את השרתים שלה במחזוריות של שנתיים; הרווח בביצועים פֶּר וואט גבוה ממחירו של הציוד החדש. אבל חברת eBay תקטין באמת את העלות לכל חיפוש רק אם תכלול בחישוביה את כל עלויות התפעול של כל שרת חדש שהיא רוכשת, ולא רק את מחירו. ועלות התפעול הגבוהה ביותר של כל מכשיר היא ההוצאה על צריכת החשמל שלו. כדי לאתר הזדמנויות לחיסכון המרבי, eBay התקינה במסדים מערכות PDU של חברת Raritan הקוראות את צריכת החשמל המדויקת בכל ספק כוח ובכל שרת בודד. פסי השקעים של Raritan מספקים מידע רציף על צריכת החשמל בקוט"ש בכל מכשיר בודד במרכז המחשוב, בדיוק של 1%. רמת דיוק זו מאפשרת, על פי התקינה, חיוב לקוחות על פי מדידה זו. פסי שקעים חכמים אלו מיועדים לספֵּק הן את צרכי ה-IT והן את צרכי המתקן כולו, והן מזינות, בזמן אמיתי, את הנתונים שהן אוספות למערכות ניהול המבנה ורישום הציוד של eBay. במושגי קונסורציום Green Grid, הן מבצעות ניטור PUE מקטגוריה 3 (או PUE3). "פסי שקעים חכמים נותנים לי את הדיוק שאני צריך בשביל לחשב את עלויות התפעול האמיתיות שלי בכל שרת עד האגורה האחרונה," אומר נלסון. "כך אני יכול להכיר את פרופיל היעילות של כל אחד מספקי הציוד, וכשאני מכין את סבב ה-RFP הבא של השרתים, אני יכול לגבש דרישות שיחזירו את מחירן."
4. מדידת טמפרטורה ברזולוציה גבוהה פרויקט 'טופז' שילב מנגנונים מהפכניים שונים במערכת הקירור שלו, ואז פנה להמשיך ולייעל אותה בזמן אמיתי – הן בהיבט העלויות והן בהיבט המהימנות – מתוך היכרות עם סביבת הפעילות של כל אחד מהשרתים. רוב מרכזי המחשוב מודדים ומבקרים את טמפרטורות האוויר היוצא ממערכות המיזוג ואת טמפרטורת האוויר החוזר אליהן. אבל נתונים אלה מוסרים מידע מקורב בלבד על סביבת השרתים האמיתית. הקירובים מאלצים את צוות המתקן לקחת מרווחי ביטחון ולקרר קירור עודף, וזהו צעד בזבזני, בהגדרה. חברת eBay, לעומת זאת, יודעת מהן טמפרטורות הכניסה והיציאה המדויקות בכל ארון וארון במרכז המחשוב 'טופז'. בפרט, מאמצים ב'טופז' את המלצות ASHRAE לניטור סביבתי של שרתים, ומודדים את הטמפרטורה בשלושה מפלסים של המעבר הקר: למעלה, באמצע ולמטה. מדידות אלה מתווספות למדידות במעבר החם. בזכות הניטור הרצוף יכולה eBay לכוונן את משתני הקירור ליעילות מרבית, ויחד עם זאת לקבל התראה מיידית על כל בעיה ברמת השרת. הקורא יזכור את החיישנים ותוכנת LiveImaging מאחד הפוסטים הקודמים.
5. פסי צבירה (busway) עיליים להפצת חשמל ברוב מרכזי המחשוב פרוס מבוך תת רצפתי של קווי חשמל היוצאים מלוחות PDU אל הארונות. אלא שמבנה כזה מפריע לאוורור ובכך משבש את יעילות הקירור. כל זה קורה מתחת לרצפה הצפה ולכן לא זוכה לתשומת לב רבה, אבל עלול להיות משמעותי. יתרה מזאת, תכנון סטנדרטי המכין חיבורי "שוט" (power whips) תת-רצפתיים ייעודיים לכל מפסק, צורך כבלי נחושת מיותרים שאינם מנוצלים היטב, ואף מגביל את גמישות הזיווד של ארונות חדשים. כדי לפתור את הבעיה, משתמשים ב'טופז' בפסי צבירה עיליים של חברת starline להפצת חשמל אשר מאפשרים חיבור קל של הארונות למקור כוח של 400A. לאורכה של כל שורת ארונות מתוחים שני מסלולים, וכל אחד מהם מספק כוח חלופי ובכך מבטל לחלוטין את הצורך בחיבורי "שוט" תת-רצפתיים. תוך דקות אפשר להוסיף שקעים למארזים מוגנים במפסק אוטומטי בכל נקודה לאורך שורת הארונות, במקום להמתין מספר ימים עד שיגיע חשמלאי ויתקין עוד "נקודות חיבור".
סיכום
חברת eBay מעוניינת מאוד בשיפור המהימנות של מערכות המחשוב שלה, שכן זמן דמימה עולה לה 2,000 $ לשנייה, כלומר $120,000 לדקה. בגלל היקף הפעילות הגדול של החברה, היא חייבת לשמור שההוצאות על ציוד ועל חשמל לא יצאו משליטה. משום כך פיתחה eBay מודל למרכזי המחשוב שלה, המבטיח פעילות IT ברמת מהימנות גבוהה מאוד וגם מוזיל את עלויות התפעול ב-50% בהשוואה למרכזים הישנים שהיא מוציאה מפעילות בהדרגה. גם מרכזי מחשוב צנועים יותר שיאמצו את הנהלים המיטביים בתעשיית ה-IT כפי שעשתה eBay, יכולים להאריך את זמן הרציפות העסקית (uptime), לקצץ בהוצאות ולהתייעל, תוך שימוש בציוד זמין ובטכניקות ותהליכים פשוטים.
מהי הטמפרטורה הרצויה בחדרי מחשב? עדכון
וחשוב לא פחות: היכן מודדים את הטמפרטורה? זו אחת השאלות החשובות למנהלי חדר מחשב, והאמת היא גם שעניתי על כך לא אחת בפוסטים קודמים ובמאמרים בעיתונות המקצועית. לא הייתי מטריח את הקורא אלמלא החידושים בתחום. החידושים הם גם בתחום התקינה וגם בתחום תוכנות הניהול והבקרה של חדרי המחשב.
על פי ASHRAE , טווח הטמפרטורה הרצוי לאוויר הקר הנשאב לשרתים הוא בין 18 ל 27 מעלות צלזיוס ( בעבר הלא רחוק זה היה 20-25 ) . הטווח המותר הוא בין 15-31 מעלות. הנוהגים המיטביים בתעשייה מכוונים ליישום טמפרטורה של 24 מעלות. טמפרטורה זו מאפשרת חיסכון בחשמל ועדיין מותירה מרווח ביטחון למקרה של כשל קצר במערכות מיזוג האוויר.
ניתן לכוון לטמפרטורה של 24 מעלות כאשר החדר ממוזג ביעילות, בדרך כלל באמצעות הפרדת מעברים קרים וחמים, ויש אחידות פחות או יותר בטמפרטורת האוויר במעבר הקר.
מס' טעויות נפוצות:
טעות 1: למדוד את הטמפרטורה במקומות לא חשובים כגון במעבר החם, בפינת החדר, ליד התקרה.
מה שחשוב מבחינת שרידות המערכות זה לבקר את האוויר הקר הנשאב לשרתים. מדידות במקומות נוספים כגון במעבר החם ובנקודות הכניסה והיציאה של מערכות מיזוג האוויר חשובות לצורך בקרה על היעילות האנרגטית של מיזוג האוויר בחדרי המחשב. אך, מה שקריטי לצורך שרידות חדר המחשב זו טמפרטורת (ולחות) האוויר בכניסה לשרתים.
טעות 2: למדוד בנקודות בודדות בחדר:
לחסוך בחיישנים זה כבר לא באופנה. המלצת ASHRAE היא למדוד בכל קדמת ארון, בשלוש נקודות גובה את הטמפרטורה והלחות. הנוהגים המיטביים ( best practices ) אומרים: בשלושה גבהים בקדמת ושלושה גבהים בצידו האחורי של ארון השרתים
טעות 3: להיבהל מטמפרטורות גבוהות בחלק האחורי של הארון
תרגיע. 50 מעלות בחלק האחורי של השרת זה בסדר גמור ואפילו טוב מאוד. גם 60 מעלות בהנחה שיש לך הפרדה טובה של מעברים קרים וחמים. אם אין לך, זה סיפור אחר.
טעות 4: לקרר יתר על המידה
יש עדיין כאלה שאוהבים שאנשים יוצאים חולים מחדר המחשב שלהם. סתם בזבוז.
בתמונה המצורפת רואים תמונה שמשגרים חיישנים אלחוטיים ל DASHBOARD . התמונה מראה את מפת החום בחדר המחשב. תוכנה זו הנקראת LIVEIMAGING מבית אלכסנדר שניידר. התוכנה מאפשרת לצפות בזמן אמיתי במצב החדר מבחינה טרמית ולזהות את הנקודות הדורשות טיפול מיידי. חמוד לא?
שינויים ב Tier system של מכון ה Uptime
בשנה שעברה הודיע ה Uptime Institute שהוא עובד על שינויים בהגדרת רמות השרידות בעזרת ועדה המורכבת ממנהלי DATA CENTER. לאחרונה פורסם השינוי הראשון.
הסבר קצר על רמות השרידות: Tier System
הגדרת רמות השרידות מ רמה 1 ( Tier 1 ) הבסיסית עד רמה 4 (Tier 4 הגבוהה ביותר) של מכון ה Uptime הפכה כבר לפני שנים להיות הסטנדרט בפועל של התעשייה להגדרת רמות השרידות.
השינוי הוא הגדרה לאחסנה מינימאלית של 12 שעות סולר לגנראטורים לגיבוי. השינוי חוצה את כל הרמות, מ 1 עד 4.
השינוי התקבל בעזרת הועדה המייעצת הכוללת 29 חברות שלהן חדרי מחשב בגדלים וברמות שונות. מס' הצעות עלו לוועדה ולא התקבלו, ביניהן החלטה על זמן גיבוי מינימאלי של מערכות UPS.
המתבונן מן הצד יכול לתמוה מדוע גם Tier 1 – שהוא חדר מחשב בסיסי , הוא חלק מן ההחלטה. ובכן אחד היעדים של המכון הוא לבדל גם את חדרי Tier 1 מחדרים מאולתרים בסגנון שאנו רואים לא מעט בישראל ( לדוגמא מזגני קיר משרדיים שמזעזעים אותי כל פעם מחדש) או מסתם ארון שרתים המוצב באיזו פינה.
לקחים מתקלות בחדרי מחשב – 1 #
האם במקרה של אזעקת אש/עשן בבנין, יש להשבית מייד את מערכות המיזוג של חדר המחשב?
מנהל חדר המחשב, אחד מהיותר מקצועיים בארץ, שיתף אותי במקרה הבא: מאזור המשרדים המצוי באותה קומה בה נמצא חדר המחשב המתקדם שלו, נתקבלה התראת אש ממערכת הגילוי. עפ"י הנוהל, הופסקה פעולת המזגנים בבניין מיידית. גם מערכות המיזוג הנפרדות של חדר המחשב הושבתו עם האזעקה. כתוצאה הושבת חדר המחשב. התראת האש היתה התראת שווא.
אמנם הכל עבד כראוי לפי הנוהל, אך הנוהל עצמו נמצא לקוי. בעקבות ניתוח הארוע הוחלט שמערכות המיזוג בחדר המחשב לא יושבתו אלא רק אם התקבלה ההתראה מחדר המחשב עצמו.
יש לכם לקחים שתרצו לחלוק עם הקהילה? כתבו לי.
יגאל שניידר
רעש בחוות שרתים משפיע על ביצועי ה STORAGE ?
ידוע שויברציות (רעידות) משפיעות לרעה על ביצועי האחסון ( STORAGE ).
ידוע גם שרעש גורם לויברציות ברכיבים עדינים.
ברנדן גרג, מהנדס בסאן מיקרוסיסטמס , מדגים כיצד רעש קולי ליד ארון האחסון גורם לעליה חדה בזמן האחזור ( Latency ). מפתיע, אך הגיוני. ראו סרטון ביו-טיוב